Exercise 17

Use power series to solve the initial-value problem

$$
y^{\prime \prime}+x y^{\prime}+y=0 \quad y(0)=0 \quad y^{\prime}(0)=1
$$

Solution

$x=0$ is an ordinary point, so the ODE has a power series solution.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to x.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Differentiate the series with respect to x once more.

$$
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Substitute these formulas into the ODE.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Bring x inside the summand.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Because of n in the summand, the second series can start from $n=0$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Make the substitution $n=k+2$ in the first series and the substitution $n=k$ in the second and third series.

$$
\sum_{k+2=2}^{\infty}(k+2)(k+1) a_{k+2} x^{(k+2)-2}+\sum_{k=0}^{\infty} k a_{k} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k}=0
$$

Simplify the first sum.

$$
\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}+\sum_{k=0}^{\infty} k a_{k} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k}=0
$$

Now that all the sums start from $k=0$ and have x^{k} in the summand, they can be combined.

$$
\sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2} x^{k}+k a_{k} x^{k}+a_{k} x^{k}\right]=0
$$

Simplify the summand.

$$
\sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2}+(k+1) a_{k}\right] x^{k}=0
$$

Since x^{k} isn't zero, the quantity in square brackets must be zero.

$$
(k+2)(k+1) a_{k+2}+(k+1) a_{k}=0
$$

Solve for a_{k+2}.

$$
a_{k+2}=-\frac{1}{k+2} a_{k}
$$

In order to determine a_{k}, plug in values for k and try to find a pattern.

$$
\begin{array}{ll}
k=0: & a_{2}=-\frac{1}{0+2} a_{0}=-\frac{a_{0}}{2} \\
k=1: & a_{3}=-\frac{1}{1+2} a_{1}=-\frac{a_{1}}{3} \\
k=2: & a_{4}=-\frac{1}{2+2} a_{2}=-\frac{1}{4}\left(-\frac{a_{0}}{2}\right)=(-1)^{2} \frac{a_{0}}{2 \cdot 4} \\
k=3: \quad a_{5}=-\frac{1}{3+2} a_{3}=-\frac{1}{5}\left(-\frac{a_{1}}{3}\right)=(-1)^{2} \frac{a_{1}}{3 \cdot 5} \\
k=4: \quad a_{6}=-\frac{1}{4+2} a_{4}=-\frac{1}{6}\left[(-1)^{2} \frac{a_{0}}{2 \cdot 4}\right]=(-1)^{3} \frac{a_{0}}{2 \cdot 4 \cdot 6} \\
k=5: \quad a_{7}=-\frac{1}{5+2} a_{5}=-\frac{1}{7}\left[(-1)^{2} \frac{a_{1}}{3 \cdot 5}\right]=(-1)^{3} \frac{a_{1}}{3 \cdot 5 \cdot 7}
\end{array}
$$

The general formula for the even subscripts is

$$
a_{2 m}=(-1)^{m} \frac{a_{0}}{(2 m)!!}=(-1)^{m} \frac{a_{0}}{2^{m} m!},
$$

and the general formula for the odd subscripts is

$$
a_{2 m+1}=(-1)^{m} \frac{1}{(2 m+1)!!} a_{1}=(-1)^{m} \frac{2^{m} m!}{(2 m+1)!} a_{1} .
$$

Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =\sum_{m=0}^{\infty} a_{2 m} x^{2 m}+\sum_{m=0}^{\infty} a_{2 m+1} x^{2 m+1} \\
& =\sum_{m=0}^{\infty}(-1)^{m} \frac{a_{0}}{2^{m} m!} x^{2 m}+\sum_{m=0}^{\infty}(-1)^{m} \frac{2^{m} m!}{(2 m+1)!} a_{1} x^{2 m+1},
\end{aligned}
$$

where a_{0} and a_{1} are arbitrary constants.

Differentiate it with respect to x.

$$
y^{\prime}(x)=\sum_{m=1}^{\infty}(-1)^{m} \frac{a_{0}}{2^{m} m!}\left(2 m x^{2 m-1}\right)+\sum_{m=0}^{\infty}(-1)^{m} \frac{2^{m} m!}{(2 m+1)!} a_{1}\left[(2 m+1) x^{2 m}\right]
$$

Apply the initial conditions to determine a_{0} and a_{1}.

$$
\begin{aligned}
y(0) & =(-1)^{0} \frac{a_{0}}{2^{0} 0!}=0 \\
y^{\prime}(0) & =(-1)^{0} \frac{2^{0} 0!}{[2(0)+1]!} a_{1}[2(0)+1]=1
\end{aligned}
$$

Solving this system yields

$$
a_{0}=0 \quad \text { and } \quad a_{1}=1 .
$$

Therefore, the solution to the initial value problem is

$$
y(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{2^{m} m!}{(2 m+1)!} x^{2 m+1} .
$$

